Учёные РХТУ им. Д.И. Менделеева, НИИЯФ МГУ, ОИЯИ и НИУ БелГУ разработали гибридный материал на основе пластика и редкоземельного металла гадолиния. Полученный материал сам не обладает радиоактивным фоном и при этом может фиксировать и поглощать постороннее излучение. Эти уникальные свойства позволят использовать его для изготовления оболочек огромных детекторов, предназначенных для обнаружения частиц тёмной материи. Результаты работы опубликованы в журнале Materials, а сам материал предназначен для эксперимента DarkSide 20K, который планируют запустить в Италии в 2025-2026 годах.
Если собрать всю известную учёным материю — планеты, звёзды, галактики, газ, — то она составит, по разным оценкам, только от 5 до 15% массы Вселенной. Все, что за пределами этого небольшого числа, учёные называют тёмной материей. Она никак не взаимодействует с электромагнитными волнами, а значит, невидима для большинства существующих приборов. Однако частицы тёмной материи вступают в гравитационные взаимодействия, и поэтому учёные уверены, что они всё-таки существуют. Иначе сложно объяснить нетипичное поведение некоторых галактик, искажение света далеких звёзд и многие другие наблюдения.
Пока учёные не поймали ни одной частицы тёмной материи, то есть не смогли достоверно зафиксировать по каким-нибудь сигналам, пускай даже косвенным, факт взаимодействия такой частицы с атомами привычного вещества. Тем не менее они запускают всё новые и новые эксперименты. Чаще всего частицы пытаются поймать в огромных камерах-мишенях, наполненных веществом — например, инертным газом аргоном. Частицы тёмной энергии, пролетая сквозь такую ловушку, могут столкнуться с атомами аргона и рассеяться на них, обнаружив свое присутствие характерными сигналами.
Но схожие сигналы могут появиться и от других, менее интересных событий. Например, при попадании в детектор высокоэнергетичных нейтронов: они выделяются при делении урана или других радиоактивных элементов, входящих в виде примесей в материал детектора, а также могут образоваться при взаимодействии космических лучей с ядрами детектора. Чтобы спрятаться от всепроникающего космического излучения, ловушки тёмной материи обычно сооружают глубоко под Землёй. Дополнительно их упаковывают в оболочки из материалов с максимально низкими радиационным фоном, которые поглощают остаточные тепловые нейтроны.
«В международном проекте DarkSide 20К, который реализуется в подземной лаборатории Гран Сассо в Италии, строят 20-тонную камеру с жидким аргоном, которая потенциально сможет уловить частицы тёмной материи. Этой камере нужна оболочка, поглощающая фоновые нейтроны, чтобы они не влияли на взаимодействие частиц тёмной материи с ядрами аргона. К тому же, материал оболочки сам по себе должен быть ультра-низкофоновым по радиоактивным элементам. Это наша часть проекта: мы работаем над созданием конструкционных элементов из такого материала», — поясняет заведующий кафедрой химии и технологии кристаллов РХТУ и один из авторов работы, Игорь Аветисов.
Чище, ещё чище
Оболочку гигантской камеры-мишени с аргоном химики РХТУ предложили создать из гибридного материала на основе пластика — полиметилметакрилата более известного как оргстекло. Это недорогой и низкофоновый материал, который к тому же содержит большое количество водорода, атомы которого способствуют захвату посторонних фоновых нейтронов. Другой составляющей гибридного материала станет редкоземельный металл гадолиний. Он лучше других нерадиоактивных элементов захватывает тепловые нейтроны. Это свойство гадолиния уже активно используют, например, для контрастирования в МРТ-исследованиях, делают из него контейнеры для захоронения радиоактивных отходов и т.д. Гадолиний с одной стороны усилит пластик в защите камеры-мишени от радиоактивного излучения, а с другой позволит фиксировать и оценивать текущий нейтронный фон, чтобы потом отделять от него сигналы от частиц тёмной материи.
Гибридный органо-неорганический материал должен быть однородным по всему объёму — и к тому же ультра-низкофоновым. Это значит, что его нужно очистить от радиоактивных урана и тория, которые обычно сопровождают гадолиний при добыче и переработке. Найти нужное количество — более 500 килограмм — чистого гадолиния на рынке металлов практически невозможно. Поэтому учёные взяли различное гадолиний-содержащее сырье и оценили содержание урана и тория. Во всех образцах оно оказалось слишком высоким для оболочки камеры-мишени, поэтому нужно было продумать технологию очистки.
В качестве исходного гадолиниевого сырья использовали хлорид гадолиния. Его хлорировали, а потом термически отжигали, то есть нагревали в вакууме. При нагревании хлориды урана и тория выделялись в отдельные фракции, оставляя гадолиниевый препарат чистым — содержание посторонних примесей в хлориде гадолиния после очистки составляло не более 1х10-11 процента. Такой чистоты уже было достаточно для создания гибридного низкофонового материала. Следующим шагом стало внедрение гадолиния в пластик. Для этого использовалась термическая полимеризация: пластик синтезировали из его мономера в присутствии ацетилацетоната гадолиния, который синтезировали из ультра-низкофонового хлорида гадолиния. Ацетилацетонат гадолиния постепенно растворялся в мономере равномерно распределялся по объёму полиметилметакрилата.
«Нагрев будущего полимера проводится поступенчато, градус за градусом. Для того, чтобы полимеризовать образец материала толщиной в 5 сантиметров размером 1 метр на 1 метр, требуется 20-30 суток. Быстрее нельзя. Мне рассказывал коллега из Китая, что он попробовал ускорить процесс — так у него там все взорвалось! Хорошо, что объём образца был небольшой. А для проекта нам потребуется толщина материала в 15 сантиметров, а может быть и больше», — говорит Игорь Аветисов.
В результате учёные получили желаемый гибридный полимер — небольшие плитки полиметилметакрилата толщиной в 5 сантиметров с массовым содержанием гадолиния в 1.5 %. Также они оценили содержания радиоактивных урана и тория в этом материале и показали, что его чистоты достаточно для изготовления корпуса детектора тёмной материи.
Задача, достойная попасть в историю науки
До запуска эксперимента на установке DarkSide 20K ещё немало времени — он запланирован на 2025-26 года, но емкость с аргоном начнут строить через пару лет. Кроме того, одновременно с DarkSide в мире сооружают ещё несколько мегаустановок для изучения редких физических событий, которым тоже может потребоваться ультра-низкофоновый материал.
«Задача, подобная нашей — создание гибридного материала на основе гадолиния, — до сих пор ещё никем не решалась. Это область совершенно не рыночная, а исключительно научная. Такие низкофоновые материалы нужны только в экспериментах по изучению явлений, подобных поиску тёмной материи. Мы давно ведём исследования в области особо чистых материалов. Например, несколько лет назад разработали ультра-низкофоновый материал на основе селена и молибдена для проекта по изучению неуловимых нейтрино NEMO во Франции», — говорит Игорь Аветисов. — «Сегодня нам известно не больше 15% материи во Вселенной. Остальное — тайна за семью печатями. Что она хранит? Гадать можно бесконечно. И поэтому новые знания в этом направлении всегда нужны. Можно ставить перед собой реальные задачи. А можно — амбициозные. Вопрос — как сделать, чтобы задача была с одной стороны выполнимой, а с другой — не мелкой, не обыденной, достойной попасть в историю науки».
Источник иллюстрации к новости: Hubble ESA/Flickr
Понравился наш материал? Подписывайся на «Популярный университет» в социальных сетях: ВКонтакте, Telegram.